POWERFUL COMPETITIVE ADVANTAGES **Tiger Optics HALO OK vs Servomex DF-560/550** | | Servomex DF-560/550 (O ₂) | Tiger Optics HALO OK (O ₂) | |---|---|--| | Calibration | Requires calibration EVERYWEEK. OFFLINE ~ 1 HOUR. Annual span calibration for O2 sensor (usually not performed onsite - customer must initiate service call). | Zero is verified continuously and automatically while analyzer remains ON-LINE. NOTE: Absolute, high-resolution optical technique confirms true spectroscopic zero directly. | | Impact | Costs result from downtime, labor and consumables (standard gas cylinder, purifier, electrolyte solution) required | Great stability, with continuous performance with no external calibration or consumables required | | Requires
Purifier | Needs purifier to do calibration | Internal purifiers with estimated life of ~ 10 years in Semi bulk gas | | Impact | Extra cost for purifiers (~\$400 USD/year per sensor) Purifier eventually fails, giving negative values If user sets software to prevent negative values, there is no way to know if purifier fails | Expense for replacement after ~ 10 Years | | Sensor
Replacement | Some users report sensor replacement needed 4~6 years. | NONE required. | | Impact | Cost currently estimated at \$10,000 per sensor Analyzer offline for duration of repair | No cost or downtime for sensor maintenance | | Annual routine running cost | ~\$500 (Add solution monthly, required calibration and electrolyte replacement). | ZERO running costs | | Impact | Higher running cost | Very low CoO | | Flow Regulator | Manual pressure regulator and bypass rotameter with valve | Fixed outlet pressure regulator and orifice internal to sensor, with no user adjustment | | Impact | Time consuming and costly, with potential for mistakes: Pressure regulator requires manual adjustment Bypass rotameter requires manual adjustment | Easy, automatic and safe: Automatically set No manual intervention required Components internal to system | | N2, Ar, He, and
H2 Sample Gas
Compatibility | N_2 , Ar, He, and H_2 only | N_2 , Ar, He, H_2 , and other inerts, such as CO2. | | Impact | Limits usage | Wide usage, highly versatile | | Response to upset | Close to 1 HOUR | THREE MINUTES; typically less than one minute! | | Impact | Time is money (lost). | Fast response saves money, cuts downtime and helps process control |